通知公告

当前位置:首页 > 通知公告 > 正文

2021年度新2会员管理端10888外请专家学术报告之二十四

时间:2021-05-19 20:53:09 来源: 作者: 阅读:

报告题目Sharp geometric inequalities in analysis and its application in ground state of Schrodinger equation with the critical exponential growth.

报告人 陈露 副研究员

报告时间2021529日(周六)9:30—10:20

报告地点:腾讯会议ID:  651 740 461

报告摘要:  Due to the wide range of applications in mathematical phy -sics, geometric analysis and string theory, Trudinger-Moser inequalities have become one of the focus in the field of Nonlinear analysis. In this talk, I will first give a survey  about the history of trudinger moser inequalities and introduce our recent work on sharp Trudinger-Moser inequalities involving the degenerate potential and sharp trace type Trudinger-Moser inequalities. Then I will present some new progress on the existence of ground state solutions for Schrodinger equation with critical exponential growth. Finally, I will also give some quantization results for this kind Schrodinger equations. Some of open problem for the future will be also discussed in this talk.


报告人简介: 陈露,北京理工大学副研究员,于2018年在北京师范大学获得力学博士学位,20189月至今在北京理工大学任特别副研究员;2019-2020在意大利Scuola Normale Superiore 访问 Andrea Malchiodi 教授一年。陈露副研究员主要研究领域为几何分析与偏微分方程,目前主要研究兴趣为稳定的极小曲面和Allen-Cahn方程。在Adv. Math.Calc. Var. Partial Differential EquationsJ. Funct. Anal. Trans. AMS等国际知名期刊上发表论文20余篇。主持国家青年基金一项。


欢迎广大师生参加!