2021年度新2会员管理端10888外请专家学术报告之二十四
报告题目:Sharp geometric inequalities in analysis and its application in ground state of Schrodinger equation with the critical exponential growth.
报告人: 陈露 副研究员
报告时间:2021年5月29日(周六)9:30—10:20
报告地点:腾讯会议ID: 651 740 461
报告摘要: Due to the wide range of applications in mathematical phy -sics, geometric analysis and string theory, Trudinger-Moser inequalities have become one of the focus in the field of Nonlinear analysis. In this talk, I will first give a survey about the history of trudinger moser inequalities and introduce our recent work on sharp Trudinger-Moser inequalities involving the degenerate potential and sharp trace type Trudinger-Moser inequalities. Then I will present some new progress on the existence of ground state solutions for Schrodinger equation with critical exponential growth. Finally, I will also give some quantization results for this kind Schrodinger equations. Some of open problem for the future will be also discussed in this talk.
报告人简介: 陈露,北京理工大学副研究员,于2018年在北京师范大学获得力学博士学位,2018年9月至今在北京理工大学任特别副研究员;2019-2020在意大利Scuola Normale Superiore 访问 Andrea Malchiodi 教授一年。陈露副研究员主要研究领域为几何分析与偏微分方程,目前主要研究兴趣为稳定的极小曲面和Allen-Cahn方程。在Adv. Math.,Calc. Var. Partial Differential Equations,J. Funct. Anal. Trans. AMS等国际知名期刊上发表论文20余篇。主持国家青年基金一项。
欢迎广大师生参加!