2018年度新2会员管理端10888外请专家学术报告之十三
报告摘要: Let (M2n+1,α,gα,J)be a Sasakian Einstein manifold with contact 1 form α, associated metric gα and almost complex
structure J and L a Legendrian submanifold in M2n+1 . L is called a contact stationary Legendrian (csL) submanifold if it is a critical
point of the area functional among Legendrian submanifolds. We will prove that csL surfaces in a 5dimensional Sasakian Einstein
manifold satisfies a fourth order quasilinear elliptic equation and by using this equation and a new Simons' type inequality for Lege
ndrian surfaces in S5, we get a gaptheorem for csL surfaces in S5, which extends arelated gap theorem of minimal Legendrian
surfaces in S5 by Yamaguchi et al..
报告人简介: 罗勇,2007年6月本科毕业于武汉大学,同年免试录取为中国科学院数学所硕博连读研究生。2010年9月取得硕士学位后到德国弗莱堡大学攻读博士学位,2013年12月博士毕业。2014年1月加入武汉大学数学与协同创新中心,现为武汉大学新2会员管理端10888讲师。罗勇现阶段的主要研究兴趣为高阶几何偏微分方程,包括Willmore泛函,体积泛函的几何限制变分问题,双调和映射的分析与几何等的研究。